Analysis of thick isotropic and cross-ply laminated plates by Generalized Differential Quadrature Method and a Unified Formulation

نویسندگان

  • F. Tornabene
  • N. Fantuzzi
  • E. Viola
  • M. Cinefra
  • E. Carrera
  • A.J.M. Ferreira
  • A. M. Zenkour
چکیده

In this paper, the Carrera Unified Formulation and the generalized differential quadrature technique are combined for predicting the static deformations and the free vibration behavior of thin and thick isotropic as well as cross-ply laminated plates. Through numerical experiments, the capability and efficiency of this technique, based on the strong formulation of the problem equations, are demonstrated. The numerical accuracy and convergence are also examined. It is worth noting that all the presented numerical examples are compared with both literature and numerical solutions obtained with a finite element code. The proposed methodology appears to be able to deal not only with uniform boundary conditions, such as fully clamped or completely simply-supported, but also with mixed external conditions, that can be clamped, supported or free.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration

An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...

متن کامل

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

Bending Analysis of Laminated Composite Plates with Arbitrary Boundary Conditions

It is well known that for laminated composite plates a Levy-type solution exists only for cross-ply and antisymmetric angle-ply laminates. Numerous investigators have used the Levy method to solve the governing equations of various equivalent single-layer plate theories. It is the intension of the present study to introduce a method for analytical solutions of laminated composite plates with ar...

متن کامل

Assessing different nonlinear analysis methods for free vibrations of initially stressed composite laminated plates

In this paper, the nonlinear free vibrations of thin symmetric and non-symmetric cross-ply composite plates subjected to biaxial initial stresses are investigated. Because of their excellent properties such as specific strength and specific stiffness, composite plates have wide applications in aerospace and mechanical structures. Based on Von-Karman's strain-displacement relations and using Gal...

متن کامل

Vibration Analysis of Thick Functionally Graded Beam under Axial Load Based on Two-Dimensional Elasticity Theory and Generalized Differential Quadrature

In this paper, vibration analysis of thick functionally graded beam with simply supported boundary condition under constant axial load is studied. The beam has a uniform cross-sectional area and the mechanical properties of the fungtionally graded beam are assumed to be vary through the thickness of the beam. Fundamental relations, the equilibrium and stability equations based on the displaceme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017